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Al for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

:1163-1172.

ML method Characteristics

Example applications in mechanical materials design

Linear regression;

Model the linear or polynomial relationship
polynomial regression i

between input and output variables

Support vector machine; Separate high-dimensional data space with
SVR one or a set of hyperplanes

Random forest Construct multiple decision trees for

classification or prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,
node i ion and graph ication

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus,”’!!? strength,** toughness'* or i
hardness;” prediction of hyperelastic o plastic behaviors"*>*4*
identification of collision load conditions; "’ design of spinodoid
metamaterials'®*

05 o
104,10 102,103 o

Prediction of strain fields' or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'** stress fields in cantilevered structures,'* or yield
strength of additive-manufactured metals;'*' prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; *° design of tessellate composites;'*” "
design of stretchable graphene kirigami;'**
structural topology optimization'*®***

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

144

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;*** prediction of strain or stress fields in
composites;'*? composite design;'®* structural topology

D afio 165167 s jals design®s®

Modulus** or strength'*'** prediction; design of
supercompressible and recoverable metamaterials''®

Strength prediction***

Hardness Predic(ion;u" designs of active
materials; ®*! design of modular metamaterials’®*

Deriving microstructure-based traction-... on laws'”*

Functional space

Desired properties (redox
potential, solubility, toxicity)

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

It is a relatively new but active area of research.
Many applications in, e.g., industrial material,
molecular and drug design.

Z. Zhou et al., Scientific Reports, vol. 9, n

Direct Inverse

Experiment or
simulation (Schrodinger
equation)

o

High-throughput virtual
screening (e.g., with 3
filtering stages)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies
generative models (VAE

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018




IAI for Experimental Design in NP/HEP

e When it comes to designing detectors and accelerators with Al this is an area at its “infancy”. What follows
uses “detector” as example but applies to both detector and accelerator.

e Typically full detector design is studied once the subsystem prototypes are ready (phase constraints from the
full detector or outer layers are taken into consideration).

e Need to use advanced simulations which are computationally expensive (Geant).
e Many parameters (and multiple objective functions): curse of dimensionality [1].
e Entails establishing a procedural body of instructions [2].

e The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some
degree of customization.

e Non-differentiable terms.

Al offers SOTA solutions to solve complex optimization problems in an efficient way

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009.
[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82


https://indico.jlab.org/event/409/
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See Session on Simulations this See Session on Reconstruction & Analysis on
afternoon Wed, Sep 8



| Why Design with Al now?

Optimization does not mean o Dt,ete,tht’,r
RTT _ . ” pumization
necessarily “fine-tuning Workflow

e \We want to use these algorithms to:
(1) steer the design and suggest
parameters that a

“manual’/brute-force optimization will —
likely miss to identify; (2) further Simulation
optimize some particular detector

technology (see d-RICH paper, e.g.,
optics properties)

Design parameters

Al promotes Interaction among Working Groups

e Al allows to capture hidden
correlations among the design
parameters.

e All “steps” (physics, detector) involved
in the Al optimization, strong interplay
between working groups



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

I Bayesian Optimization

BO is a sequential strategy
developed for global
optimization.

After gathering evaluations
we builds a posterior
distribution used to
construct an acquisition
function.

This cheap function
determines what is next

query point.

Posterior

Acquisition function

t(n) t(n+1)

New
observation

Posterior

w_/—\_e

Next
point

Acquisition function

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.

3. Update the Data and, in turn, the Surrogate Function.

4. Go To 1.

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/
http://krasserm.qithub.io/2018/03/19/gaussian-processes/



http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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I Dual RICH: case study e el

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. *+gas (1.6m, n(CZFB): 1.0008)

"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." PhotoSensor
Journal of Instrumentation 15.05 (2020): P05009. T
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Sector Side View
e  Continuous momentum coverage. /|
e Simple geometry and optics, cost effective. ‘ | Gasvolume
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

1

"\ PhotoSensor

—_ Aerogel + Filter !



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

I Construction Constraints

The idea is that we have a bunch of parameters to optimize that characterize the detector design.
We know from previous studies their ranges and the construction tolerances.

Variations below these
values are irrelevant

I parameter | description ~_range [units] ) tolerance [units]
R mirror radius [290,300] [cm] 100 [pm]
pos r radial position of mirror center [125,140] [cm] 100 [pm]

pos 1 longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]

tiles x shift along x of tiles center [-5,5] [cm] 100 [um]
tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [pm]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.



The MOdeI and . Model built from observations

black points: observations
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Al-Optimized dRICH

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.
JINST 15.05 (2020): P05009.

charged
particle

3D Downstream View . . 3D Upstream view
Spherical Mirror
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Statistically significant Improvement in both parts.

In particular in the gas region where the 50 threshold shifted
from 43 to 50 GeV/c and the 30 one extended up to

Notice that before this study we did not know “how well” the
legacy design was performing.




I Convergence Criteria

S5 333 5 3 5
W N0 U A WNR

e Can in general be applied in the design space, in
the objective space, or looking at the behavior of
the acquisition function.

features
I

e \We defined a set of conditions to ensure
convergence:

o These correspond to the logic AND of
booleans on each feature and on the variation
of the figure of merit.

o They are built on standardized Z and Fisher
statistics.
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e Pre-processing of data required to remove outliers.




I Comparison with Random Search

Each call:
400 tracks generated/core
20 cores

[
o
3]

1 design point ~ 10 mins/CPU
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e BO with GP scales cubically with number of observations.

e Bayesian optimization methods are more promising because they offer principled approaches to weighting the
importance of each dimension.

e For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality.

o Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of
target relative to the unit hypercube

Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281-305.



. . . [1] Deb, Kalyanmoy. "Multi-objective optimisation using evolutionary
M u Itl p I e O bJ eCtI VeS ' algorithms: an introduction." Multi-objective evolutionary

optimisation for product design and manufacturing. Springer,

London, 2011. 3-34.

e The problem becomes challenging when the objectives are of conflict to
each other, that is, the optimal solution of an objective function is
different from that of the other.

e In solving such problems, with or without constraints, they give rise to a
trade-off optimal solutions, popularly known as Pareto-optimal solutions.

e Due to the multiplicity in solutions, these problems were

. T

V. Pareto,

1848-1923

Point C is not on the]Pareto

proposed to be solved suitably using evolutionary f B et ol 4 and spint 5
algorithms which use a population approach in its n
search procedure. . a 2] @
fl1(A) = f1(B) g
MO-based solutions are helping to reveal important hidden B = -
knowledge about a problem — a matter which is difficult to N
achieve otherwise [1]. B
M
f


https://en.wikipedia.org/wiki/Vilfredo_Pareto

I Frameworks

Notice that MOO with dynamic/evolutionary
algorithms (see, e.g., [1-3]) are probably the most
utilized approaches, followed by more recent
developments on multi-objective bayesian
optimization (see, e.g., [4-7]). Using them has the
advantage of having an entire community
developing those tools.

https://github.com/topics/multi-objective-optimization —>

Agent-based approaches to MOO are also possible
(see, e.g., [8]), but won't be discussed here.

Remarkably these approaches can accommodate
mechanical and geometrical constraints during the
optimization process.

[1] J. J. Durillo and A. J. Nebro, “iMetal: A Java framework for multi-objective optimization,”
Advances in Engineering Software, vol. 42, no. 10, pp. 760-771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, “DEAP:
Evolutionary algorithms made easy,” The Journal of Machine Learning Research, vol. 13, no.
1, pp. 2171-2175, 2012.

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in Python,” IEEE Access, vol. 8,
pp. 89497-89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective
optimization,” in International Conference on Parallel Problem Solving from Nature, pp.
298-307, Springer, 2002.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E.
Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” arXiv preprint
arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, and V. C. Mariani,
“MOBOpt—multi-objective Bayesian optimization,” SoftwareX, vol. 12, p. 100520, 2020.

[7]1A. Mathern, O. S. Steinholtz, A. Sjéberg, M. Onnheim, K. Ek, R. Rempling, E. Gustavsson,
and M. Jirstrand, “Multi-objective constrained Bayesian optimization for structural design,”
Structural and Multidisciplinary Optimization, pp. 1-13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective
reinforcement learning and policy adaptation,” in Advances in Neural Information Processing
Systems, pp. 14636-14647, 2019

Pymoo




Elitist Non-Dominated Non-dominated  Crowding

sorting distance

Sorting Genetic SSEEing

Population

@(t+1)

-« Rejected

[1] Deb, K., et al. "A fast and elitist multiobjective
genetic algorithm" IEEE transactions on
evolutionary computation 6.2 (2002): 182-197.

This is one of the most popular approach

(>35k citations on google scholar), characterized by: f The crowding distance d, of point
" . . 2 [ ) iis a measure of the objective
e Use of an elitist principle _ space around i which is not
e  Explicit diversity preserving mechanism i+1 cocuptedbyany °I2§rpi‘:!ﬂf;‘i!2,'n“.
e Emphasis in non-dominated solutions 14 1
| | I
| ) "
The population R, is classified in non-dominated fronts. :_ -‘ i1
Not all fronts can be accommodated in the N slots of available in thenew |~~~ 777 - °
population P, .. We use crowding distance to keep those points in the last
front that contribute to the highest diversity. f



Software Stack

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogels with low refractive indices are very fragile tiles break during
production and handling, and their installation in detectors.

To improve the mechanical strength of aerogels, Scintilex developed a
reinforcement strategy. The general concept consists of introducing fibers
into the aerogel that increase mechanical strength, but do not affect the
optical properties of the aerogel.

Paper in preparation.

=
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The ECCE Inner Tracker

ETTL (2 layers) mRICH
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IThe ECCE Inner Tracker

e Design include simultaneously:

momentum resolution
angular resolution
Kalman filter efficiency
Mechanical constraints

o O O O

Pareto fron

Solulic

t: multiple candidate solutions

Convergence for New Optimisation

>= 11 parameters

3 (4) objectives

Population size 100

Offspring distributed over >=30

2 Can take a
cores snapshot any time

80000 tracks / design point during evaluation
~1h / design point

This is (already) an unprecedented attempt in
Ratios are with respect to a reference design detector design fOI’ com pIeXIty'

Each proposed design is consistent with an Aluminum support shell
from the reference design




The ECCE Inner Tracker

p [GeV]

O Reso

d6 [mrad]

Solution B Solulion C

KF Ineff

Optimal/baseline -1

Baseline Ineff

Solution E Solution F

Generated Pseudo-rapidity n
Juswenoidwi A>usidRTUIIN SAREISY

10-12

1214 14716 16 18 18- 20
Generated Momenta p [GeV/c]

See talk by W. Phelps for more details

The decision making process done after optimization.
For each design solution in the Pareto Front one can study the corresponding detector performance.



Inner Tracker Barrel (+ disks in the h-endcap and e-endcap)

I Multiple Pipelines: Example
\ >—— B— e Configuration 1: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (ITS2)

° Configuration 2: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (ITS2)
° Configuration 3: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (uURwell)

° Configuration 4: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (uRwell)

-

updated configurations with any
additional requirements

New optimization pipelines



e Characterization of simulation times
Re S O u rce S Time distribution for 250 calls (5 iterations each with 50 cores)

1000 events

. : e Simulating 80000 in total
OUR PROBLEM: Inner Tracker 4000 events for each evaluation, 1
>= 11 parameters ’ 5000 events

o evaluation is <=80 mins
3 objectives

Population size 100
Offspring distributed over >=30 cores

e running on scicomp @ JLab

Farm Cluster Node Status Time in s

“The “Farm” status on an unusually quiet day (scicomp.jlab.org)

N M¥i [ [ Gnaracterization of fime faken by GA ¥ sorting

Job Slot

Total Slots @ Memory Used @ Memory Requested @ CPU Used R d of

21

ed: 0GB/251GB

) Used a test problem
DTLZ1

Job Slot

fars
M
LT H |II 5 Ill "I‘IIII'I i il
WA AT IE L
Tl I lldHA ¢ il il i |
S

Total Slots @ Memory Used @ Memory Requested @ CPU Used off

e  \Verified scaling
following MN? and
convergence to true
front

The scientific computing cluster has:
° 25k cores EIC Projects are allocated 10%
° 1PB for EIC use
° Batch use as well as interactive use supported with
o Nodes with up to two 32 core AMD Epyc
Processors (128 threads), 256GB Ram, 1TB SSD
local storage
o 3 Nodes with 4 Titan RTX Cards (24 GB
Memory)

o GPU nodes also available through
jupyterhub jlab org ~10k CPUhours

e  ~1s/call with 10* size!

° For 11 variables and 3
objectives needs ~
10000 evaluations to
converge




. . [11 M.T. Jensen, IEEE Trans. Evol. Comput., 2003
MOEA Parallelization
e Well known that NSGA-Il increase in computational complexity as O(MN?) [1].

e Arecent trend in MOEA is distributed NSGA-Il and implementation on supercomputers. This is useful when large
populations are needed (e.g., 10°), due to complexity and/or to approximate the Pareto front with high accuracy.

e A custom optimized parallel NSGA-II called swNSGA-II has been designed for Sunway TaihuLight [2]
supercomputer.

[2] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.

TABLE 3 e sWNSGA-II utilize process and thread

40500 SO0 Tha Running Time of sWNSGA-Il an Multiple Cora Graup(s) level parallelism based on an improved

CG(s) Time in second(s) Speedup

island master-puppet model.

Canbinet Cabinet Cabinet 59708
4 Supernodes 4 Supernodes 4 Supernodes P Performance have been benChmarked

391.01
= feperiwemeded gwnsean | 35 Lo against conventional NSGA-II with a
2607447 speedup of ~5-10* for standard
: ‘ — optimization problems.
4 core groups 57 e Comparisons with GPU (GeForce GT 630)
SW26010 Processor 1 MPE, 64 CPE sWNSGAI | 8 278 11 -based NSGA-II done using 1 core group
only (64 CPE), obtaining a speedup of

~10 with large populations.

*MPE only.



I Design Workflow

Developed to cope with complex problems
which are computationally expensive in
order to reduce the number of evaluations
needed for the optimization

v v

. t ! o
Design parameters I: :!
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Detector
Simulation
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IWith large datasets...
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IMODE

Detectors design with Al is gaining a lot of interest.

e MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in
design optimization of detectors for particle physics applications A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28.

e  Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector
performance, analysis potential, and cost-effectiveness.

Detector parameters

Cost constrainteand Conceptual layout of an optimization pipeline
detector-related for a muon radiography apparatus.

systematic uncertainties

An end to end optimization requires modeling
of simulations. Requires collect reference data
to train the surrogate models ML
implementations.

Cosmic ray

simulator Detector

response




I Summary

EIC can be one of the first experiment to be designed with the support of Al.

ECCE is leading these efforts with an unprecedented attempt in detector design (multidimensional design
and objective spaces).

None ever accomplished a multi-dimensional / multi-objective optimization of the global design, i.e., made
by many sub-detectors combined together, that can be solved with Al

o  Costs can be explicitly included during the optimization provided a reliable parametrization)

o Anintrinsic overhead regards compute expensive simulations (+ reconstruction/analysis). How to speed up
bottlenecks and overall these steps? See discussion in the Sessions on: Simulations, Reco & Analysis.

o Larger populations of design points can be simulated to improve accuracy of the Pareto front in
multidimensional spaces with Al-based accelerated optimizations.

Likely future detectors will be designed with the help of Al achieving optimal
performance and cost reduction. Gk
One of the conclusions from the DOE Town Halls on Al for Science on 2019 was that “Al | § “i\ FORSCIENCE A

techniques that can optimize the design of complex, large-scale experiments have the _\\TOWN HALL /"
potential to revolutionize the way experimental nuclear physics is currently done”. :




